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1. 

Dynamic models of complicated structures are typically of the finite element type, although
considerable work has been done using receptance theory with partial differential
equations (see, for example, Ewins [1] or Nicholson [2]). Component mode synthesis has
also been associated with large structural models, but is usually of the discrete form (see
Hurty [3]). Receptance theory requires the formulation of component receptances, which
are generally formed from infinite series of component eigenfunctions. This method may
leave the analyst with concerns about the proper form of the cross-receptances or about
convergence of the solution. Some problems, such as cyclic structures, are amenable to
exact solutions without receptance determinations. It is this class of problems that is of
concern here.

In the classical analysis for the forced response of continuous systems (cf. Meirovitch
[4], chapter 7), such as beams and plates, the orthogonality of the eigenfunctions is used
to uncouple the equation of motion into independent second order ordinary differential
equations for the modal responses. As the orthogonality property can be proven for
self-adjoint systems, the self-adjointedness of the mass and stiffness operators of the
differential equation of motion for the structure is sufficient evidence that an undamped
system will uncouple.

The classical theory, as delineated by Meirovitch [4], must be adapted for use with
assembled structures. Such structures do not have orthogonal modes in the same sense as
an individual component structure. In fact, an assembly of n similar components will have
n modes corresponding to each individual mode of the stand-alone component. If the
components are identical, the eigenfunctions of each component (every mode of the
assembly has an eigenfunction, possibly null, for each component) corresponding to a
single mode may be similar or identical. Thus, these eigenfunctions are not orthogonal to
each other. Furthermore, the other n-1 modes of the assembly corresponding to the given
mode of a stand-alone component also have similar or identical eigenfunctions among all
components and modes. Therefore, if one were to (as in the classical method) expand the
response of each component into an infinite series of eigenfunctions for that component,
substitute that expansion into the differential equation of motion for that component,
multiply the resulting equation by the eigenfunction of an arbitrary mode, and integrate
over the domain of the component, as many as n terms of the expansion could be non-zero
even though the component equation of motion is self-adjoint in the usual sense. There
would be n such seemingly insoluble coupled equations for the modal responses.

In this letter, the above dilemma is resolved by assembly of the component equations
in a natural way that takes account of the proper contribution of any forces applied to
any component. The resulting assembled equations can be treated in the usual manner as
uncoupled modal equations, providing a new form of self-adjointedness is satisfied by the
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equations of motion of the assembly. The method is illustrated using an assembly of
Euler–Bernoulli beams.

2.       

The individual modes of a cyclic structure must possess some type of orthogonality in
order for the modal equations to uncouple. For each mode of vibration, there is an
eigenfunction for each component. The individual eigenfunctions for each component of
a given mode will be quite similar, depending upon how well tuned the cyclic structure
is (how close the components resemble each other). However, different modes in a set of
n modes corresponding to a single mode of a stand-alone component differ in the
magnitude and phase of the component eigenfunctions (in the assembly eigensolution, the
magnitudes of the eigenfunctions of the components in a given mode cannot be scaled
independently, as they are dictated by the eigensolution). It is this difference in the
magnitudes and phases of the component eigenfunctions that provides the orthogonality
of the modes.

The idea behind the orthogonality of cyclic structures is simple. Assuming the
eigensolution is available, the expansion theorem is used to write the response of each
component as an infinite series of the eigenfunctions of that component. Adapting the
notation of Meirovitch [4], chapter 5, the response of component i, wi , would be expanded
to

wi (x, y, t)= s
a

r=1

hr (t)Wir (x, y), (1)

where the subscript i refers to the component, the subscript r refers to the mode, hr are
the time dependent modal co-ordinates, and Wir are the individual eigenfunctions of each
component. These n expansions are substituted into their corresponding component
equations of motion. If one again uses Meirovitch’s notation for the mass and stiffness
operators of a component, one can write these equations as

Li [wi ]+Mi
12wi

1t2 =Li$ s
a

r=1

hr (t)Wir %+Mi
12

1t2 0 s
a

r=1

hr (t)Wir1= fi , (2)

where Li are the assumed linear stiffness operators for the component equations of motion,
Mi are the mass operators, and fi is the force applied to component i. Next, these n
equations are multiplied by the eigenfunction for their respective components of an
arbitrary mode. The resulting products are then integrated over the domain of the
components. If one also assumes harmonic time dependence at frequency v, as usual in
linear structural systems, these equations may be written as

gD

Li $ s
a

r=1

hr (t)Wir %Wis dD−v2 gD

Mi 0 s
a

r=1

hr (t)Wir 1Wis dD=gD

fi Wis dD= f�is . (3)

Finally, the n resulting equations are summed. If the modes are othogonal in this assembled
sense, only one term in the series for each response (the s term) will survive the summation,
and any applied forces will be accounted for through the integration and summation as
time dependent modal forces.

For the modes to be orthogonal, the assembly equations must possess an assembly
self-adjointedness. As one might now guess, self-adjointedness of the assembly is
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determined according to the summation of the usual procedure. Thus, for any two sets
of comparison functions ui and vi , the assembly is said to be self-adjoint if

s
n

i=1 gD

Li [ui ]vi dD= s
n

i=1 gD

Li [vi ]ui dD (4)

and

s
n

i=1 gD

Mi [ui ]vi dD= s
n

i=1 gD

Mi [vi ]ui dD (5)

The usual proof of orthogonality follows from the assumption of self-adjointedness and
non-coincident eigenvalues (see Meirovitch [4, section 5-5] for the proof in the case of a
single component). For perfectly tuned cyclic structures, coincident eigenvalues are
common, but orthogonal modes for such eigenvalues are generally obtainable through the
use of engineering intuition. This claim as well as all of the above developments and more
will be made clear through a simple example.

3.    - 

Here the example of four identical, uniform Euler–Bernoulli beams connected by linear
and torsional springs to ground and to each other is used to illustrate the method of
obtaining the modal equations of motion for the forced response of a cyclic structure. This
model, although highly idealized, is intended to represent a bladed disk. The number of
blades was chosen as the smallest model for which all relevant characteristics would be
manifest. The blades are mounted symmetrically about a circle and lie in a plane. Vibration
is restricted to the same plane. Figure 1 illustrates the model features for an arbitrary
number of blades. At the ‘‘hub’’ end, each beam rotates against a grounded torsional
spring krg and translates against a grounded linear spring klg . A set of coupling springs
connects the beams to each other. The beams are free at the other end. The displacement
of beam i is designated yi (x, t), and the independent variable x is not distinguished among
the beams. As Euler–Bernoulli beam theory assumes small, linear deformations, the
rotation of the torsional springs is assumed equal to the slope of the beam displacement
at the ‘‘hub’’, 1yi /1x(0, t). Additionally, the angle the linear coupling springs klc make with
the beams is assumed to be a right angle, as proper accounting of the force in the spring
would only involve multiplication by a common angle sine, which could be incorporated

Figure 1. Idealized bladed-disk assembly for an arbitrary number of blades.
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into the spring constant klc . If the beam flexural rigidities are designated (EI)i (leaving the
possibility that each beam may have different properties, although in this example they
will be identical), the masses per unit length are designated mi , and the applied forces are
designated pi , application of Hamilton’s principle for uniform beams yields the equations
of motion

(EI)i 1
4yi /1x4 +mi

12yi

1t2 = pi (x, t) (6)

and the boundary conditions

(EI)i
12yi

1x2 (0, t)− krg
1yi

1x
(0, t)+ krc $1yi+1

1x
(0, t)+

1yi−1

1x
(0, t)−2

1yi

1x
(0, t)%=0, (7)

(EI)i
13yi

1x3 (0, t)+ klg yi (0, t)+ klc [2yi (0, t)− yi+1 (0, t)− yi−1 (0, t)]=0, (8)

12yi /1x2(l, t)= 13yi /1x3(l, t)=0. (9)

It can be easily verified that these equations are self-adjoint according to (4) and (5). Note
that this holds true even when the blades are ‘‘mistuned’’, such that any or all of the beams
may have different values of E, b, h, or l.

The eigenanalysis is performed in the usual way by assuming harmonic motion and
separation of variables:

yi (x, t)=Yi (x)g(t)= (Ai cos bi x+Bi sin bi x+Ci cosh bi x+Di sinh bi x) ejvt, (10)

where b4
i =mi v

2/(EI)i . As there are four boundary conditions for each beam, the
eigenvalue problem consists of a 16×16 block-circulant matrix (some properties of square
circulant matrices are given by Pierre and Murthy [5]) whose determinant will vanish when
v coincides with a natural frequency. Once a natural frequency, say vk , is found, the
eigenfunctions Yik may be determined by assigning a value to one of the coefficients
Ai −Di , eliminating the corresponding row from the boundary condition matrix, shifting
the corresponding column to the other side of the equation, and inverting the remaining
15×15 matrix. Using rectangular steel beams (E=220·5 GPa, density 7500 kg/m3) of
dimension 0·01×0·02×0·20 m, with the smallest dimension corresponding to the
thickness b, the first four modes were determined and are plotted in Figure 2. As modes
2 and 3 have coincident eigenvalues, the third shape was determined by a simple
permutation of the second. The spring values used were krg =120 kNm/rad,
klg =120 MN/m, krc =4 kNm/rad, and klc =4 MN/m, and the corresponding natural
frequencies were v1 =1334·0125 r/s, v2 =v3 =1336·5454 r/s, and v4 =1338·7917 r/s. In
the next four modes, each beam has the approximate shape of the second mode of a single
cantilever beam, but the individual beams are phased differently again for different modes
in that set, and so on for all higher modes.

To determine the forced response, one must first assign a load. For simplicity, a
harmonic point load on the tip of blade 1 was chosen. This load can be represented, using
Dirac’s delta function, as f1 =Fd(x− l) sin vt and f2 = f3 = f4 =0.

To obtain the modal equations for the forced response, one first employs the steps given
by equations (1–3) to each beam. The summations in (3) are not eliminated in this step,
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Figure 2. First four modes of a four-bladed disk with E=220·5 GPa, m=1·5 kg/m, l=0·2 m, b=0·01 m
and h=0·02 m. (a) Mode 1: —, Y11 =Y21 =Y31 =Y41; (b) Mode 2: —, Y12; ----, Y22 =Y42; —-—, Y32;
(c) Mode 3: —, Y13 =Y33; ----, Y23; —-— Y43; (d) Mode 4: —, Y14 =Y34; ----, Y24 =Y44.

but they are eliminated when these equations are summed together. For example, the first
three modal equations are given by

s
4

i=1 0(EI)i b
4
i1 g

l

0

Y2
i1 dx1h1 (t)+ s

4

i=1 0mi g
l

0

Y2
i1 dx1ḧ1 (t)=FY11 (l) sin vt, (11)

s
4

i=1 0(EI)i b
4
i2 g

l

0

Y2
i2 dx1h2 (t)+ s

4

i=1 0mi g
l

0

Y2
i2 dx1ḧ2 (t)=FY12 (l) sin vt, (12)

s
4

i=1 0(EI)i b
4
i3 g

l

0

Y2
i3 dx1h3 (t)+ s

4

i=1 0mi g
l

0

Y2
i3 dx1ḧ3 (t)=FY13 (l) sin vt=0, (13)

where b4
is =mi v

2
s /(EI)i , and the summation terms can be recognized as modal stiffnesses

and masses.
The modal responses hs are easily determined from expressions like equation (11) by

assuming a sine function for the particular part. Initial conditions can also be incorporated
by transforming physical initial conditions into modal space, if a transient solution is
desired. Of course, exact physical responses can only be obtained by consideration of the
infinity of modal responses and back-substitution into the expansion theorem (1). The
usual convergence rules should be applied in truncating the series of modal responses for
engineering approximations.



This work was performed under the sponsorship and guidance of Joe Hollkamp and
Bob Gordon of the Flight Dynamics Directorate, Structures Division, Wright Laboratory,
Wright-Patterson Air Force Base, Ohio.



   536



1. D. J. E 1973 Journal of Mechanical Engineering Science 15, 165–186. Vibration
characteristics of bladed disk assemblies.

2. J. W. N 1986 American Institute of Aeronautics and Astronautics Journal 24, 485–491.
Free vibration of stiffened rectangular plates using Green’s functions and integral equations.

3. W. C. H 1965 American Institute of Aeronautics and Astronautics Journal 3, 678–685.
Dynamic analysis of structural systems using component modes.

4. L. M 1967 Analytical Methods in Vibrations. New York: Macmillan Publishing Co.
5. C. P and D. V. M 1991 NASA technical memorandum 104519. Aeroelastic modal

characteristics of mistuned blade assemblies: mode localization and loss of eigenstructure.


